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Abstract 

Time prediction methods based on monitoring surface displacement (SD) are 

effective for early warning against shallow landslides. However, failure time 

prediction by Fukuzono’s original inverse-velocity (INV) method is less 

accurate due to variation in the inverse-velocity (1/v) caused by noise in the 

measured SD, which amplifies the fluctuation in the resultant 1/v. Therefore, 

the present study incorporates pre-analysis to acquire better prediction by 

reducing the effect of noise on the measured SD. The data extraction (DE) and 

moving average (MA) methods are used to filter the measured SD for better 

smoothing of 1/v. The reproducibility of the measured SD and the scattering 

are assessed using the root mean square error (RMSE) and determining factor 

(f), respectively, to select the optimum SD interval (∆x) for data extraction in 

the DE method. The data, treated by the DE and MA methods, are utilized to 

predict the failure time based on the INV method and the relationship between 

velocity and acceleration on a logarithmic scale (VAA) method. Accordingly, 

∆x gives the smallest sum of the normalized RMSE and normalized (1-f), which 

offers a better prediction. When the SD at failure changes, ∆x is changed. The 

best prediction is obtained by DE preprocessing with the VAA method because 

it minimizes the effect of the individual 1/v by reducing the scatter in the 

relationship between velocity and acceleration. However, the time prediction 

using data processed by the MA method shows poor prediction due to some 

scattering of the inverse velocity. In some cases, the prediction by the VAA 

method using MA data provides better prediction than the results of the INV 

method by MA data. 
 

1. Introduction 

The time prediction of a landslide occurrence is an 

important task for early warning against landslide 

disasters, but there is still uncertainty about its precision. 

However, slope scale prediction is a worldwide necessity 

in the framework of landslide risk reduction. In this 

regard, prediction based on monitoring displacement data 

is generally used in practice. Displacement monitoring 

using geotechnical methods in indoor model slopes and 

outdoor field experiments using a rainfall simulator have 

been adopted in recent studies related to the shallow 

landslide failure mechanisms and the forecast time of 

failure for early warning. For example, Fukuzono [3] 

monitored the surface displacement (SD) using 

extensometers on the large-scale indoor model slopes. 

Furthermore, Moriwaki et al. [5] conducted a full-scale 

model slope by monitoring the SD with displacement 

meters, and Ochiai et al. [6] reported an outdoor field 

experiment of monitoring displacement using 

extensometers on a natural slope in the city of Futtsu, 

Chiba Prefecture. 

 

Many researchers have adopted time prediction 

methods based on monitoring the displacement of slopes 

[2, 3, 7, 8, 9, and 10]. As mentioned above, the prediction 

method of the onset of landslides is based on the 

monitoring of slopes, which is based on the relationship 

between the time and SD of a slope before the failure 

occurs, as shown in Fig. 1. Accordingly, the time variation 

in creep behaviour consists of three phases, namely, 

primary creep, secondary creep and tertiary creep. Among 

the time prediction methods adopted to date, the method 

proposed by Fukuzono [3] has been widely adopted in 

practice due to its simplicity and convenience of use. 
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Fig. 1: The relationship between time and SD of the soil before failure under constant stress conditions (Saito, 1965) 

 

 
 

Fig. 2: The relationship between the velocity and acceleration of the SD (Fukuzono, 1985) 

 

He proposed a relationship between the velocity and 

acceleration of SD just before failure (for the tertiary 

creep stage) in a large-scale model slope under sprinkling 

water, as shown in Eq. 1. 

 

                   (1) 

 

where v and t are the velocities of the SD and 

correspondence times, respectively. In addition, 𝒂 and 𝛼 

are the experimental constants that result from the 

intercept on the vertical axis and gradient of the 

relationship line, respectively, when the velocity and 

acceleration of the SD data are plotted over time (Fig. 2). 

 

Based on the above relationship, he introduced a 

prediction method called the inverse-velocity (INV) 

method, which was created by integrating the relationship 

between the velocity and acceleration of SD by time just 

prior to failure (Eq. 2). 

 

       (2) 

 

where tr is the predicted failure time. Fukuzono [3] 

noted that the inverse velocity reached zero just before 

failure. Therefore, the failure time of a slope by the INV 

method could be determined by extrapolating the resultant 

curves to cross the time axis.  

 

The past literature reveals that many researchers have 

adopted the INV method to forecast the failure time of 

landslides and that some of them achieved precise 

prediction, while some of them did not succeed 

completely. For example, Carlà et al. [1] predicted the 

failure time of a natural rockfall by the ground-based 

interferometric synthetic aperture radar method using the 

INV method, and they conveyed that the INV method 

gives precise results. Mazzanati et al. [4] highlighted that 

an improved version of the INV method called ‘average 

data Fukuzono’ (ADF) is necessary to achieve the best 

results. ADF incorporates the moving average of the 

displacement data over time and effectively minimizes the 

prediction error due to scattering of inverse-velocity 

values. Furthermore, Zhou et al. [11] emphasised that the 

time prediction effectiveness using the INV method is 

limited for actual landslides and that accuracy can be 

improved by introducing controllable variables. He 

proposed the modified INV method, which improves the 

accuracy of the predicted failure time by avoiding earlier 

prediction than actual failure time. That report noted that 

the forecasting effectiveness of the INV methods directly 

depends on the quality of the measured displacement data. 
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Fig. 3: The comparison of time variation of displacement for measured SD and extracted SD by 1 mm interval 

 

 
 

Fig. 4: : 𝑹𝑴𝑺𝑬           and (𝟏 − 𝒇       )   value variation with different interval for SD data extraction 

 

Accordingly, the time prediction by Fukuzono’s 

original INV method may succeed in some cases but not 

in others because the results are widely affected by the 

quality of the measured data, as the displacement noise 

amplifies the resultant velocity. If the error in 

displacement data is not so considerable, the velocity 

variation, which is calculated using the same displacement 

data, becomes higher. This results in causes several peak 

values with up and down variations in velocities over time 

before failure. Hence, the present study focuses on 

improving the failure prediction by minimising the 

influences of the inverse velocity fluctuation by 

introducing the preprocessing of displacement data before 

the prediction. 

2. Methodology  

Methods for Raw Data preprocessing: 
 

Data preprocessing is introduced to obtain a better 

prediction of landslide failure, which reduces the sudden 

fluctuation of 1/v values by decreasing the effect of noise 

on the measured SD. Two approaches called the data 

extraction (DE) and moving average (MA) methods are 

utilized in the present study. 

 
 

 

Data extraction (DE) method 

The DE method is carried out to determine the optimal 

displacement interval (∆x) for extracting the data to 

predict the failure time, which minimizes the scattering of 

1/v values by avoiding the noise of the measured SD. The 

root mean square error (RMSE) and determining factor (f) 

values are used as supportive parameters to evaluate the 

reproducibility of the measured data and scattering in the 

relationship between velocity and acceleration in order to 

select ∆x for the DE method. The RMSE values are 

calculated by Eq. 3.  

.  
 

                      (3) 

 

Where N is the total number of the data, Fi is the 

measured SD at time ti, Ai is the extracted SD at time ti, 

and indicates an error between the 

measured and extracted SD. Suppose there are no data at 

the time ti for the extracted data. In that case, data 

corresponding to ti are projected by considering the 

proportional distribution of the extracted data before and 

after time ti, as shown in Fig. 3. Generally, when the data 

extraction interval is increased, the reproducibility of the 

measured data is decreased, and the calculated RMSE 

values become larger. 

 

 



I. Ariyarathna and  K. Sasahara   ASGE Vol. 07 (01), pp. 1-10, 2023 

4 
 

 

 

 1 𝑣       
𝑡
=
 1 𝑣  𝑡 +  1 𝑣  𝑡−1 +⋯ 1 𝑣  𝑡−(𝑛−1)

𝑛
 

 
1

𝑣
  

𝑑 1 𝑣  

𝑑𝑡
 = − 𝛼 − 1   𝑡𝑟 − 𝑡  

𝒕𝒓 =
𝒕𝟐 𝟏/𝒗 𝟏/ 𝒅 𝟏/𝒗 /𝒅𝒕 𝟏 − 𝒕𝟏 𝟏/𝒗 𝟐/ 𝒅 𝟏/𝒗 /𝒅𝒕 𝟐
 𝟏/𝒗 𝟏/ 𝒅 𝟏/𝒗 /𝒅𝒕 𝟏 −  𝟏/𝒗 𝟐/ 𝒅 𝟏/𝒗 /𝒅𝒕 𝟐

 

𝑡𝑟 = 𝑡 +
1

𝑎 𝛼 − 1 
 
1

𝑣
 
𝛼−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 5: Time variation of the inverse velocity derived from both the measured 1/v and smoothed inverse velocity 

( ) and the SD 

 

The f values measure how well the regression line fits 

with the velocity and acceleration on a logarithmic scale 

(Fig. 2). The linear regression line was obtained using 

Microsoft Excel for the relationship between the velocity 

and acceleration on a logarithmic scale utilized to get the f 

values. It expresses how much of the total variation in 

acceleration (vertical axis) is described by the velocity 

variation (horizontal axis) in the relationship between 

velocity and acceleration on a logarithmic scale which is 

always between 0.0 to 1.0. A value of 1.0 indicates a 

higher relationship strength. It means the lowest value of 

(1-f) gives the lowest scattering. However, calculated 

RMSE and (1-f) are not in the same range, which causes 

the weight ratio between RMSE and (1-f), is changed 

depending on the displacement interval used for the data 

extraction. So, in the case of RMSE, though the minimum 

value is zero, the maximum value is changed by more than 

1.0. In that case, the maximum and minimum value 

difference is equal to the one and calculate all values 

within the range of 0.0 to 1.0 as normalized RMSE 

( . So, both values are normalized into the same 

range, 0.0 to 1.0, assigning the weight ratio 1:1 between 

RMSE and (1-f), as shown in Fig. 4. The ∆x increases, the 

discrepancy between measured and extracted data 

increases, and scattering in the relationship between the 

velocity and acceleration decreases. Considering the 

optimum ∆x, it gives at the lowest summation of (   

and normalized (1-f), ( ). 

 

Moving average (MA) method 
 

The moving average inverse velocity ( ) values 

(calculated by considering consecutive 1/v values) are 

used to smooth the time variation of 1/v in the MA 

method. In this regard, we calculate ( ) by considering 

different consecutive values and select the best 

consecutive value, which gives the best smoothing time 

variation of 1/v. The ( ) at time step t is calculated 

using Eq. 4. 

 

 (4)           
 

Where n is the number of considered 1/v values and t is 

the present time step. As shown in Fig. 5, if the 

disturbance of SD is not significant, the 1/v variation 

calculated using the same SD becomes higher. However, 

the individual fluctuation is lower when considering 

( ), which gives a smoother curve.  

 

Prediction of the Failure Time 
 
Calculation of velocity and acceleration values 
 

The calculation of the velocity and acceleration from 

the measured SD and time data is explained below. First, 

the velocity is defined as the SD difference between the 

previous and present time steps divided by the 

corresponding time step difference. Second, the 

acceleration is defined as the velocity difference between 

the previous and present time steps divided by the 

corresponding time step difference. 

 
Failure prediction from Fukuzono’s original 
inverse-velocity (INV) method 
 

The INV method is based on the relationship between 

1/v and time, which reaches zero just before failure. 

Therefore, the failure time prediction can be predicted by 

extrapolating resultant curves to cross the time axis, which 

is given by the time differentiation 1/v in Eq. 2 and some 

arrangement to produce the ratio of 1/v to the increment of 

the inverse velocity, as shown in Eq. 5. 

 

            (5)
        

The failure time can be calculated using the ratio of the 

1/v to its increment ratio at two different times, as shown 

in Eq. 6, which is the process of the INV method initially 

proposed by Fukuzono (1985). 

 

(6)         
 

 
Failure prediction from the relationship between 
velocity and acceleration (VAA) method 
 

The failure time prediction by the VAA method can be 

derived from the rearrangement of Eq. 2 to Eq. 7. 

               
                                   (7) 
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Fig. 6: Grain size distribution of the surface soil at the experimental site 

 

Table 1: Physical properties of the surface soil layer 

Soil particle density (g/cm3) 2.574  

Minimum density (g/cm3) 1.082  

Maximum density (g/cm3) 1.361 

Coefficient of uniformity 5.57 

 

The failure time can be derived by substituting the 

present time (t) and corresponding inverse-velocity values 

(1/v) with 𝒂 and 𝛼 values into Eq. 7. The 𝒂 and 𝛼 values 

are derived from the relationship between velocity and 

acceleration on a logarithmic scale from linear regression 

analysis as shown in Fig. 2. 

 

Landslide field experiment on a natural slope in 
Futtsu, Chiba Prefecture 
 
Experimental Conditions 
 

A landslide field experiment on a natural slope in the 

city of Futtsu in Chiba Prefecture was conducted on 12 

December 2018 using a rainfall simulator as requested by 

NHK, Nippon Hoso Kyokai (Japan Broadcast 

Corporation). The experimental site was sparsely forested 

with hardwoods with a slope of approximately 40 degrees 

and with a smooth slope surface. The grain size 

distribution of the surface soil layer and the physical 

properties of the soil are shown in Fig. 6 and Table 1, 

respectively. The thickness of the surface soil layer was 

approximately 1 m based on the results of a portable 

penetration test (Japanese Geotechnical Society, 2017) 

using a number of blows (10 cm penetration) with a 5 kg 

weight dropped from a height of 50 cm. During the 

experiment, artificial rainfall was supplied to an area 10 m 

long and 10 m wide. A landslide occurred after four hours 

and 25 minutes of rainfall with an intensity of 140-300 

mm/h, and the depth of the landslide was approximately 1 

m according to Ochiai et al. [6]. A total of six 

extensometers at three locations along two survey lines 

were installed (Fig. 7(a)). Extensometers 1, 2, and 3 were 

placed on line 1(Fig. 7(b)), and the others were placed on 

line 2. Furthermore, Fig. 7 shows the cross-section before 

failure (straight line) and after failure (dotted line), and it 

reveals that the failure was a sliding-type landslide. A 

detailed explanation of the experiment can be found in 

Ochiai et al. [6]. 

 

Experimental Results 
 

Although six extensometers were installed on the 

experimental slope, only Nos. 1 and 5 were within the 

landslide mass, and the others were out of the landslide 

area. Therefore, the SD measured at their corresponding 

times by extensometers Nos. 1 and 5 was used for the 

present study. Extensometers No. 1 (line 1) and No. 5 

(line 2) show movement along the surface approximately 

275 mm to 204 mm just before the failure.  

 

Results: Data Preprocessing 

 

This section presents only the results corresponding to 

extensometer No. 5 (line 2). The recorded SD and time at 

failure were 204.4 mm and 22,680 s, respectively. Fig. 9 

shows the result of the DE method, which reveals that the 

3.0 mm SD interval is the best ∆x for data extraction to 

failure time prediction. The analysis is carried out by 

selecting an SD interval from 0.1 mm to 1.0 mm by a 0.1 

mm difference and then a 1.0 mm interval difference until 

10.0 mm.  gradually increases when the extracting 

displacement interval is increased except at the 0.1 mm 

interval and 3.0 mm interval. The calculated  at the 

3.0 mm interval is a similar value, 0.30, with the 2.0 mm 

interval. The parameter ( ) gradually decreases as the 

extracting displacement interval increases, but a small 

increase of less than 0.03 can be observed until 0.8 mm. 

Subsequently, the ( ) values suddenly drop until 

reaching 2.0 mm and then decrease smoothly. However, 

the sum of  and ( ) shows the lowest value at 

3.0 mm as 0.37. The 2.0 mm interval also shows a closer 

value, 0.38 to 3 mm, as the sum of  and ( ). 

 

 

 

 

 

 

 



I. Ariyarathna and  K. Sasahara   ASGE Vol. 07 (01), pp. 1-10, 2023 

6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: (a) Front view of the natural slope in Futtsu and arrangement of extensometers, and (b) longitudinal section 

along experimental slope at Futtsu (with the locations of displacement gauges Nos. 1, 2, and 3 along survey line 1) 

 

Fig. 10 shows the time variation of 1/v and ( ), 

which is calculated by considering the different number of 

consecutives 1/v to select the best smooth time variation 

of ( ) in the MA method for extensometer No. 5. 

Accordingly, moving average velocities are calculated 

using 2, 5, 10 and 20 consecutives (2MA, 5MA, 10MA 

and 20MA). The results reveal that when the considered 

number of consecutive increases, the smoothness of the 

resultant time variation ( ) curves is improved. 

 

Prediction of the Failure Time 
 
Prediction results by the INV method 
 

In the present study, the time remaining to failure (tr-t) 

approaching zero is considered an indicator for failure 

prediction, which is almost similar to considering the 

predicted failure time (tr) as an indicator of the failure. But 

in the practical scenario, prediction accuracy cannot be 

assured based on the tr due to the poor relationship of time 

variation tr. In contrast, the time variation (tr-t) leads to a 

more precise prediction. Fig. 11 (a) and (b) show the 

failure time prediction by the INV method using the data 

processed by the DE method and MA method in an 

orderly manner. Fig. 11 (a) contains the time variation of 

(tr-t) by the INV method from the data processed by the 

DE method by only 0.1 mm, 0.6 mm, 3 mm, and 10 mm. 

The predicted (tr-t) by the INV method using DE data 

tends to lie along the time axis with some up and down 

fluctuation in the 0.1 mm extracted data. However, upon 

comparing the results of higher data extracting SD 

interval, the prediction shows the values away from the 

time axis, suggesting that when the data extraction interval 

is higher, the method gives an earlier prediction. However, 

the prediction using the INV method and DE data shows 

negative values throughout the prediction in all SD 

intervals, which means that during the experiment, the 

prediction results indicate that slope failure has already 

occurred. 

 

Fig. 11 (b) contains the time variation of (tr-t) by the 

INV method from the data processed by the MA method 

only for 2MA, 5MA, and 20MA. 
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Fig. 8: The time variation of the SD, measured by extensometer Nos. 1 and 5 

 

Fig. 9:  and ( ) value variation with the different SD intervals in the DE method for extensometer No. 5  

 

Fig. 10: Time variation of 1/v and ( ), (a) for 2MA and 5MA, and (b) for 10MA and 20MA 

The results of the predicted (tr-t) by the INV method 

using MA data also show the same result as the DE 

method (Fig. 11 (a)). The results are almost identical to 

the results of the DE data; it shows when the number of 

consecutive used for calculating the moving average is 

higher, an earlier prediction is obtained. Therefore, the 

prediction using the INV method, with both DE and MA 

data, shows poor prediction because the results still show 

scattering and negative values just before failure. 

 

Prediction results by the VAA method 
 

Fig. 12 shows the time variation of (tr-t) by the VAA 

method from the data processed by the DE method. In 

order, Fig. 12 (a) and (b) refer to the whole experiment 

duration and the time just before failure (from 21,000 s to 

failure), respectively. The prediction begins after 10,560 s 

because values higher than 0.1 mm, the lowest 

displacement interval, are used for data extraction. The 

prediction from data extracted using 0.1 mm and 0.6 mm 

intervals between 15,330 s to 18,705 s shows negative 

values. However, the prediction, using 3 mm and 10 mm 

shows only positive values, and the general trend of 

decreasing (tr-t) with time and reaches closer to zero just 

before failure (Fig. 12 (b)). The fluctuation of time 

remaining to failure (tr-t) from the extracted data using 3 

mm and 10 mm intervals is minimal compared with the 

other predictions. When comparing the results of time 

variation produced from the data extracted using 3 mm 

and 10 mm intervals, the 3 mm interval gives a better 

linear decreasing trend than the 10 mm interval. Therefore 

3 mm is the optimum displacement interval for DE, as it 

offers the best results for failure prediction by the VAA 

method. 
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Fig. 11: Time variation of the time remaining to failure (tr-t) by the INV method (a) using the data processed by the 

DE method (0.1 mm_DE, 0.6 mm_DE, 3 mm_DE, and 10 mm_DE represent the results from the DE by SD intervals 

of 0.1 mm, 0.6 mm, 3 mm, and 10 mm), and (b) using the data processed by the MA method 

 

Fig. 13 shows the time variation of (tr-t) by the VAA 

method for the data processed by the MA method. Fig. 13 

(a) and (b) refer to the whole experiment duration and just 

before failure (from 20,000 s to failure), respectively. Fig. 

13 (a) highlights that the VAA method’s prediction using 

the MA method’s processed data gives both negative and 

positive predictions, regardless of the number (n) used for 

calculating the moving average. Further prediction with 

5MA also gives a negative value just before failure. 

However, the prediction with 2MA and 20MA shows a 

general trend of decreasing (tr-t) just before the failure. 

 

The VAA method’s prediction using the MA shows a 

decreasing trend in the latter time before the failure 

compared with the results of the VAA method using DE 

data. On the other hand, the results obtained from the 

VAA method using the MA show a higher scatter just 

before the failure, while the VAA method using DE gives 

relatively less scatter. Furthermore, the prediction given 

by the VAA method using MA data has uncertainty and 

depends on the conditions, which could not be ensured in 

every case. For example, if the prediction by the VAA 

method using 2MA and 20MA gives a decreasing trend, 

then 5MA gives a poor prediction. Based on the present 

analysis, the prediction given by the VAA method using 

2MA gives a linearly decreasing trend compared to 20MA 

with the above-explained complications. Therefore, the 

best prediction is obtained from the VAA method using 

data processed by the DE method.  

3. Conclusions 

The present study predicted the failure time using two 

methods with different preprocessing data methods to 

evaluate the effectiveness of the preprocessing data 

methodologies to improve the failure prediction using 

field experiment data on a natural slope in Futtsu, Chiba 

Prefecture. During the study, the following conclusions 

could be drawn. 

1. The failure prediction by the VAA method using 

DE preprocessing gives the best prediction 

because it minimizes the individual velocity 

variation. In the process of DE, not only 

reproducibility but also equal priority is given to 

reducing the scatter in the relationship between 

velocity and acceleration. 

2. The optimal displacement interval (∆x) by the 

DE method corresponds to the smallest sum of 

 and ( ), which gives the best 

prediction using the data extracted by the VAA 

method. The ∆x changes depending on the 

distance moved by the landslide. Therefore, more 

studies on a different scale of landslides are 

needed to obtain the relationship between ∆x and 

the moved displacement. 
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Fig. 12: Time variation of the time remaining to failure (tr-t) by the VAA method using the data processed by the 

DE method (a) for the whole experiment duration, and (b) just before failure (from 21,000 s to failure) 

 

 

 

Fig. 13: Time variation of the time remaining to failure (tr-t) by the VAA method using the data processed by the 

MA method (a). For the whole experiment duration, and (b). Just before the failure (from 20,000 s to failure) 

 

3. Best smoothing of the time variation of the 

inverse velocity curve is obtained from the 

moving average velocities calculated by a larger 

number of consecutive velocities than a small 

number of consecutive velocities. However, the 

time prediction using data processed by the MA 

method shows poor prediction due to some 

scattering of the inverse velocity. In some cases, 

the prediction by the VAA method using MA 

data gives better prediction compared with the 

results of the INV method by MA data.  

References 

1. Carlà T., Nolesini T., Solari L et al. (2019), “Rockfall 

forecasting and risk management along a major 

transportation corridor in the Alps through ground-

based radar interferometry”, Landslides, 16, pp. 1425-

1435.  

2. Crosta G.B., Agliardi F. (2003), “Failure forecast for 

large rock slides by surface displacement 

measurements”, Can Geotech J, 40, pp. 176-191.  

3. Fukuzono T. (1985), “A new method for predicting 

the failure time of a slope”, In proc IVth international 

conference and field workshops on landslides, Tokyo, 

Japan, pp. 145-150.  

4. Mazzanti P., Bozzano F., Cipriani I., Prestininzi A. 

(2015), “New insights into the temporal prediction of 

landslides by a terrestrial SAR interferometry 

monitoring case study”, Landslides, 12, pp. 55-58. 

5. Moriwaki H., Inokuchi T., Hattanji T., Sassa K., 

Ochiai H., Wang G. (2004), “Failure processes in a 

full-scale landslide experiment using a rainfall 

simulator”, Landslides, 1, pp. 277-288. 

6. Ochiai H., Sasahara K., Koyama Y. (2021). 

“Landslide field experiment on a natural slope in 

Futtsu city, Chiba prefecture”, Understanding and 

reducing landslide disaster risk, pp 169-175. 

7. Rose N.D., Hunger O. (2007), “Forecasting potential 

rock slope failure in open pit mines using the inverse-

velocity method”, Int J Rock Mech Min Sci, 44(2), 

pp. 308-320.  

8. Saito M. (1965), “Forecasting the time of occurrence 

of a slope failure”, In: proceedings of 6th 

International conference on soil mechanics and 

foundation engineering, Montreal, pp 537-541.  

9. Varnes D.J. (1982), “Time-deformation relations in 

creep to failure of earth materials”, Proc of 7th 



I. Ariyarathna and  K. Sasahara   ASGE Vol. 07 (01), pp. 1-10, 2023 

10 
 

 

 

Southeast Asian Geotechnical Conference, 2, pp. 107-

130. 

10. Voight B. (1988,) “A relation to describe rate-

dependent material failure”, Science, 243, pp. 200-

203. 

11. Zhou X.P., Liu L.J., Xu C. (2020), “A modified 

inverse-velocity method of landslides”, Eng Geol, 

268. https://doi.org/10.1016/j.enggeo.2020.105521. 


